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Abstract

MostPeerto-Pee(P2P)systemassumehatall peersare
cooperatingor thebenefitof thecommunity Howeverin

practice thereis a significantportion of peerswho leech
resource$rom the systemwithout contributingany in re-

turn. In this paper we proposea simple Selfish Link-

basednCentve (SLIC) mechanisnfor unstructuredP2P
file sharingsystemgo createanincentive structurewhere
in exchangefor betterservice, peersare encouragedo

sharemoredata,give morecapacityto handleotherpeers’
gueries,and establishmore connectiongo improve the
P2Poverlay network. Our SLIC algorithmdoesnot re-

quire nodesto be altruistic and doesnot rely on third

partiesto provide accuratenformationaboutotherpeers.
We demonstratethroughsimulation,that SLIC’s locally

selfishandgreedyapproachs sufiicientfor the systemto

evolveinto a“good” state.

1 Introduction

Peerto-Peer (P2P) file-sharing systemsorganize users
into anoverlaynetwork to facilitatethe exchangeof data.
However, currentdeployed systemdack ary “viable” in-

centive structuredor encouragingisersto behave in the
bestinterestof the community As aresult,variousforms
of aluseandattackhave beenobseredin practice. The
most commononesare free loaders[2] and denial-of-
service(DOS) attacks. A freeloaderis a userwho only

downloadsfiles from a P2Pnetwork while never sharing
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Figure 1: Example of mutual access contr ol

ary files. Theseusershecomdeechesanddrainresources
from the community Unlike free loaderswho only re-
ducegheresourcen thenetwork, therearealsomalicious
userswho launchactive DOS attacksagainstP2Poverlay
networks. Theseattackstypically take the form of serv-
ing bogusfiles or strainingthe network by floodingbogus
queries.

Someresearchersiave proposeda global reputation-
basedsystemfor combatingtheseproblems|8, 1, 5, 6,
10]. In sucha systemeachuseris assignedh reputation
by the communitythat reflectsits contribution to andits
participationin the community This reputationcanthen
beusedo filter outfreeloadersor malicioususers Others
have suggestedmposingabarteringeconomy[11, 13] on
theentirecommunitywhereusersexchangeservicesThe
economycanbeimplementedasmicro-paymentsr IOU
certificates.

In contrasto building aglobalsystemwith reputations
or economicshatrequiresusergo cooperat®r somecen-
tral authorities,this paperproposesa simple alternatve
solutionSLIC (SelfishLink-basednCentive) whereeach
usercan,andin factis encouragedo, act selfishly and
greedily We will shav thatSLIC allows anunstructured
P2P overlay network, suchas Gnutella[7], to “evolve”
into a statewherefreeloadersandattaclersareostracized
quickly withoutaskingary userto behare againstisbest
interest.



SLIC operateshy taking advantageof one key prop-
erty of the flooding-basedearchmechanisrusedin un-
structured®2Poverlaynetwork. In flooding,whenanode
wantsto find a particularpieceof data,it sendsa search
queryto all its neighborson the P2Poverlaynetwork. Its
neighborgthenin turn forwardsthe searchqueryto their
neighborsandsoforth. Obsene thatthis flooding-based
searchmechanismallows neighboringnodesto control
ead other’s accessto the rest of the network. For ex-
ample,considettwo nodesA andB in Figurelthatshare
anoverlay link. In orderfor node A’s queriesto reach
othernodesin the network fragmentB, node B mustfor-
ward A’'s queries.Similarly, nodeB canonly reachnodes
in network fragmentA if node A forwardsits queries.

SLIC exploits this relationshipby allowing eachnode
to “rate” its neighborsand to usethe ratingsto control
how mary queriesfrom eachneighborto processandto
forward on. Intuitively, for node A in Figure 1, if B is
providing greatserviceeitherdirectly by B itself or indi-
rectly by nodesreachableria B in the fragmentB, then
A would give ahighratingto B andprocessandforward
morequeriesfrom B. Corversely badservicewould re-
ducerating andthe numberof queriesserviced.In other
words, SLIC usesthis mutualaccessontrolrelationship
asa meansof retaliationif a nodedoesnot play fair or
connectgo nodesthatdo not play fair. To improve their
service,nodesareincentvizedto provide contentand/or
to connectio nodesthatprovide content.

Our simple approachhastwo significantadvantages:
(1) eachuseris greedyin thatheis trying to maximizehis
own advantagen gettingbetterservice;(2) eachuseronly
keepsstatisticsaboutits neighborsanddoesnotrely upon
atrustedauthorityor othersto give accuratéreputations”
aboutunknown users. For the remainderof this paper
we will develop this intuition into our selfishlink-based
incentive mechanisn{SLIC). We will showv thatSLIC is
effective in controlling free-loader@andmaliciousnodes.
Ourmaincontributionsare

e proposeheSLIC algorithmthatis usedoy eachnode
to manipulatetherating (Section2)

e illustratethatthe incentve structurefrom nodesex-
ecutingSLIC doesthe“right thing” (Section3)

e shaw thatSLIC canrespondquickly whenthe over-
lay network is dynamicallychanging(Section4)

2 Basic Algorithm

Informally, SLIC is a generalalgorithmthat operatesn

periods,e.g., every minute. During eachperiod,a node
has certain capacitythat it is willing to usefor servic-
ing queriesfrom neighboringnodeson the P2Poverlay:.

To distinguishgood neighborsfrom badones,a nodeu

maintainsa weight W (u, v) for eachneighborv, where
0 < W(u,v) < 1. A weightof 1 indicatesan excellent
neighborwhile aweightof 0 impliesa useles®ne. With

theseweights,a nodeu thenallocatests capacityto ser

vice incoming queriesfrom its neighborsproportionally
to the weights. For instancejf u hastwo links to nodes
x andy with weights1 and0.5 respectiely, thenin this
periodnodeu will give % of its capacityto queriesfrom

nodex and% of its capacityto queriesfrom nodey.

At theendof a period,eachnodereevaluatests opin-
ion, or weights,of its neighborshasedon how muchser
vice the neighborshad provided during the current pe-
riod. In particular we measurghe numberof queryhits
thata nodehasrecevedfrom eachneighbor A hit in this
casemeansa pieceof datathat satisfiesa searchquery
If aneighborgave moreservicethanpreviously expected,
then the correspondingveight will increase. Similarly,
less servicewill resultin lower weight. Since quality
of servicemay fluctuatefrequently SLIC usesan expo-
nential decaymechanisnfor updatingweights. Specif-
ically, if W(u,v) denotesthe weight usedin the pre-
vious period, W'(u,v) denotesthe new weight for the
next period, and I(u,v) denotesthe quality of service
from neighborv during this period, then W' (u,v) =
aW (u,v) + (1 —a)I(u,v) for somea where0 < a < 1.

The weight adjustmentand the capacityallocationin
the SLIC algorithm createa feedbacksystem. In other
words, if nodew is recevvzing mostof its queryhits from
nodew, thenu will reciprocateby increasingthe weight
W (u,v) andreducingotherweights. As aresult,nodeu
will give mostof its sparecapacityto handlequeriesrom
v. In this section,we first introducea simplemodeland
somenotationfor formally describinghealgorithmin the
contet of an unstructuredP2Pfile sharingsystem. We
thengive the detailsof the SLIC algorithmstatedabove.
We finish by illustrating how SLIC works throughtwo
examples.



2.1 A SimpleModel and Notation

We usea very simplemodelto capturethe key character
istics of an unstructuredP2Pfile sharingsystemthatare
relevantto our studyandsimulation.We modelthe over
lay network asa graphG = (V, E). Thevertex setV
representmiodes(users)in the network. The edgeset £
representshe overlaylinks.

We modelthe periodichehaior of SLIC asnodesop-
eratingin rounds;althoughthe roundsdo not have to be
synchronizedfor simplicity, we will assumesynchroty
in this paper During a single round, eachnode v can
handleup to C,, queries.This capacityC,, is divided be-
tweengeneratinqiew queriesandansweringjueriesfrom
the neighbors.Thusa nodegeneratingoo mary queries
will have little capacityto processand forward queries
from its neighbors,and vice versa. We use p,, where
0 < p, < 1, to denotethe fraction of capacityusedby
nodewu to generatenew queries. Thusa maliciousnode
thatfloodsthe network with queriesis capturedoy anode
with p = 1. Herewe have assumedhat eachnodecan
generatep,, - C,, querieseachround. In practicewhere
the P2Poverlay network consistsof supetnodes, there
shouldbe enoughnew queriesfrom clients of a super
node. Moreover, even if a node generatesfewer new
gueriesijt still canusethe extra capacityto serviceneigh-
bors’ queries. If a noderecevesmorethanC, queries
from its neighborsijt canchoosewhich C,, queriesto ac-
cept. Whenchoosingqueriesfrom a singlelink, we as-
sumenodeswill alwayspreferquerieswith high time-to-
live (TTL). (Previouswork in [12] shovedthatpreferring
high TTL queriesresultin themostqueriesprocessed.)

We modelthe flooding-basedsearchmechanismas a
simpleforwarding stepwhereeachnodew sendsits C,
guerieschoserduringrounds to its neighbordor process-
ing duringrounds + 1. In the procesf this forwarding
step,eachquerys TTL is decremented.If a query has
TTL 0, it is removedfrom thesystem.

We alsomodeltheamountof datathatanodew is shar
ing by aparametewe call theansweringpowerA,, where
0 < A, < 1. Thisansweringoowerrepresentshe proba-
bility of nodev having a hit thatsatisfiesaquery In other
words, a large A,, value meansnodew is sharingmary
files. Similarly, alow 4, value(e.g.,0) representa free

1A supernodeis a high capacitynodethatactsasa proxy for alarge
numberof slower or low capacitynodes.

loader Notethatwe have simplifiedtheansweringpower
by assuminghata nodeis equallylik ely to have a hit for

ary queriesthuswe areignoringclusteringeffectsin data
sharedby users.We alsoassumehateachnodecanonly

contributezeroor onehit.

In this model, we have only capturednode capacity
guery generation,query propagation,and likelihood of
having a hit at individual nodes. We are not modeling
theactualfile downloads.Section5 briefly addresselow
to generalizeour SLIC algorithmfor handlingfile down-
loads. We alsousethe following notationin describing
our algorithm.

e FE, denoteghesetof edgedrom nodeu.

e W;(u,v) denotesthe weight of the link (u,v) in
rounds.

e ();(u) denoteshesetof queriesnitiatedby u whose
TTLs have expired during rounds. For our simple
model, nodescan determineexactly which queries
have expired by the round number In practice,we
canusea fixedtime-outfor this purpose.

e g;(u,v) denoteshe numberof hits for queryq that
wererecevedfrom thelink (u,v) by rounds.

e 7 denoteghemaximumTTL for eachquery
e « denotesheexponentialdecayrate,e.g.,0.9.

e P;(u,v) denotethe numberof queriesgeneratedy
nodev thatnodewu decideto processn rounds.

e G;(u) denotethe numberof queriesnodeu gener
atedin rounds.

2.2 Description of the Algorithm

The SLIC algorithmhastwo components(1) how nodes
operatewvhile usingtheweights,and(2) how nodesupdate
the weightseachround. Figure 2 providesthe pseudo-
codefor how nodesoperatewhenrunning SLIC. When
the systenfirst starts all weightsWy (u, v) areinitialized
to 1. Subsequentlyduring eachround, nodesfirst use
someof theircapacityto generat@ew queriesasin stepl.
Thenumberof new queriess controlledby the parameter
pu- As mentionedreviously, amaliciousnodethatfloods



During rounds, nodeu performsthefollow actions:
1: generate,, - C new queries

22 Wiotat = 2 (u,0)em, Wilu,v)

3: for eachedge(u,v) € E, do

4. Processandforward (1 — p,)C - % queries
with the highestTTL from thelink (u, v)

5: end for

6: if therearestill sparecapacityrepeatsteps2 through
5 to divide the sparecapacity

7: Tally numberof hitsfor newly expiredquerieggener
atedby u, i.e., Q;(u).

8: for eachedge(u,v) € E, do

9 Wig1(u,v) = compute_weight(W;(u,v), Q;(u))

10: end for

Figure 2. Pseudo-code for node operation.

Procedur e compute_weight(W (u,v), Qi(u))
1: for eachedge(u x) € E, do

2: Z ,7)

Z(u,y)EEu qi(u,y)

2 €Qi(u)
3: end for
4 ey = max {I(u,z)|(u,x) € Ey}
I
5: returna - W(u,v) + (1 — ) IE“:U)

Figure 3: Pseudo-code

weight

for computing new

thenetwork with querieds equivalentto having alarge p,,
value.

Oncenodeshave generatedheir new queries,in steps
2 throughb, eachnodedividesthe remainingcapacities
proportionally accordingto the weights,amongits links
to processemotequeriesfrom neighbors Note,however,
thatit is possiblefor a nodeto still have sparecapacity
aftersteps2 through5. For example,supposeheweights
dictatethat nodew shouldchoosel00 queriesfrom link
(u,v). If nodewv only sends50 queriesthentherewould
be anunusedcapacityof 50 queries.In the rareevent of
having unusectapacitywe reallocatehe capacityamong
theremaininglinks asin step6.

After nodeshave chosenwhich queriesto processand
forward,in stepsr through10, eachnodeu thenconsiders

Procedure compute_weight_scaled(W

(u7 U): Ql (u))

1: for eachedge(u, z) € E, do
2 I = Y 2T
9€Q; (v) Z(“ e (“ v)

3: end for

4: Imazx = max {I(u,z)|(u,z) € E.}.

5: if P;(u,v) > Gi(u) then

6:  returna - W(u,v) + (1 — a) Gi(u) I(u,v)
Gi(v) Imazx

7: else I(u,0)
U, v

8: re_turna -W(u,v) + (1 —a) Tmas

9: end if

Figure 4: Pseudo-code for computing new

weight with excess scaling

its own queries@;(u) whoseTTLs have expired at the
currentrounds. Nodew usesthe statisticson how mary
hits for thequeriesin Q;(u) wererecevvedfrom eachlink
to updatethelink weights.

Thereare mary ways to performthis weight update.
Figure3 shavs the pseudo-codéor onesuchupdatepro-
cedure. In this case for eachqueryq € Q;(u), we first
determinethe fraction of hits contributedby a particular
neighborv. The contributionof alink (u, v) in thisround
I(u,v) is thensimply the sumof thesefractionsover all
queriesin Q;(u) asin step2. Oncewe have the contri-
bution for eachlink, we find the maximumcontribution
by ary link I,,,, in step4. We finally computethe new
weightin stepb usinganexponentialdecayrateof a with
thenew contrikbution I (u, v) normalizedoy the maximum
I.- Besidegheweightadjustmenshowvn in Figure3,
we alsotried computing! (u, v) astheraw numberof hits
or thenumberof querieswith atleastonehit. Both varia-
tionsyield similar results.

The computeweight procedurein Figure 3 has one
weakness.Supposehat accordingto nodew’s weights,
nodeu decidesto processe queriesfrom its link with
a neighboringnodewv. Also supposehat all nodesare
generatings queriesper round. Now nodev could take
adwantageof the situationby generatingnore of its own
queries(say% queries)ratherthanforwardingits neigh-
bors’ queriesthusgettingmorehits for its queries.This
exploitation is possiblebecausenodewv cancontinueto
procesghesamenumberof queriesrom nodeu asbefore



Figure 5: Example network of 2 white nodes with
p = 0.5 and black node with p =0.9

to maintainits weightwith ». This situationis undesi¢
ablebecauseén actingselfishly all nodesmay decideto
generatenorequerieswhich causethe systento operate
in alessefficientmanner We will illustratethisweakness
in detailin Section3.3. To combatthis undesirablebe-
havior, we introducea modificationcalledexcessscaling
whosepseudacodeis shavn in Figure4.

Underexcessscaling,nodeu penalizesa neighboring
nodew if u is processingnore queriesfrom v thanthe
numberof queriesu generatedtself, i.e., P;(u,v) >
G;(u). For instance,if u is generatingl0 queriesper
round, but happensto process20 queriesfrom v per
round,thenw shouldpenalizev. The penaltydependon
how mary queriesveregeneratedby the neighbor andis
capturedn step6 in Figure4.

As we will seein Section3.3, this modificationis suf-
ficientto discouragenodesfrom generatingnorequeries
thanthe systenrnorm.

During our SLIC evaluation,we noticedthat the per
roundcontribution I (u, v), ascomputedn step2 of com-
puteweight is very noisybecausef thestochasticature
of the numberof hits a nodeprovides. To reducenoise,
insteadof usingthe singleroundcontribution, we keepa
moving window of 10 roundsandusethe averageof the
contributionsin this window.

2.3 A Simple Example

To illustratehow weightschangeover time whenrunning
SLIC, let us begin with a simple exampleof threenodes
asshawn in Figure5. The threenodesare connectedn
aring. The two white nodesare using50% of their ca-
pacityto generataew querieswhereagheblacknodeis
trying to getextraserviceby using90% of its capacityto
generateew queries.All threenodeshave ananswering
powerof 1, i.e.,every querywill have a hit ateachnode.
Intuitively, we hopethat whenrunning SLIC, the two
white nodeswill detectthatthe black nodeis dedicating
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Figure 6: Weight adjustments by the white node
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Figure 7: Weight adjustments by the black node

fewerresourceo procesgheir queriesandretaliateby re-
ducing their servicefor the black nodes queries. And
indeed, this situationdoesoccur Figure 6 shovs how
a white nodeadjustits weightsasa function time. The
dashedcurve correspondgo the link to the otherwhite
node,andthe solid curve representhe link to the black
node. The x-axis givesthe round number The y-axis
shaws the weight. As expected,the white nodequickly
reducesits weight for the black node while booststhe
weight for the otherwhite node. It is alsointerestingto
notethat the weight for the black nodedoesnot drop to
0, asit stabilizesaround0.05. Thereasoris thatalthough
the black nodeis generatingnore queries,it is still pro-
viding someservicewith its 10% sparecapacitythusget-
ting a smallamountof servicein return.

For completenessye shav how theblacknodeadjusts
its weightfor thewhite nodesin Figure?. Sinceit is get-
ting the samekind of servicefrom bothwhite nodesthe
weightsareboostedo 1. Notethatin both Figures6 and
7, theweightsinitially dropsbeforereachingl. Thisdrop
is thesideeffectof ourimplementatiorthatusesamoving
window of size10 for computingthe perroundcontritu-
tion. Whenthe simulationstartsinitially, the first round
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Figure 8: lllustration of weights changing over
time for a complete graph of 10 nodes.

hasazerocontribution becausao querieshasbeenprop-
agatedyet. The effect of this initial zerolingersaround
until it expiresfrom the moving window.

24 A Morelnvolved Example

Now considerafully connectedyraphof 10 nodeswhere
eachnodehasp = 0.2, i.e., devotes80% capacityto the
others.Supposeve let 5 nodeshave anansweringoower
of 0.8 andthe other 5 nodeswith answeringpower of
0.1. RunningSLIC on this network, one might expect
the nodesto form two cliquesof five nodes:onefor high
answeringpower nodesandonefor low answeringpower
nodes.However, thatis nottrue.

Figure8 illustrateshow the weightschangefor a node
with high answeringpower over time. The x-axis gives
the round number The y-axis givesthe weights. There
are9 curves,onefor eachlink to theothernodes Initially,
the weightsfor links to the high answeringpower nodes
increasewhile the weightsfor the low answeringpower
nodesdecreasalramatically However, the weightsfor
low answeringoower nodesdo not all go to 0; several of
themstabilizesaround0.1. The reasonfor this stability
is becausesomelow answeringpower nodesdecidedto
processll queriesrom a high power node thusensuring
its correspondingveightdoesnot diminishto 0.

An interestingquestion then,is whatkind of network
resultsfrom running SLIC on this 10 nodescomplete
graph. Figure9(a) shaws the final network with weights
for eachedge.Theedgesotshovn haveweight0. In this
figure,the high answeringpower nodesarecoloredblack
andlow answeringpower nodeswhite. The style of the
linesandarraws indicatedifferentweights. To helpdeci-

pherthedatain thefigure,solid lineshave higherweights
thandashedines which have higherweightsthandotted
lines. Also for the samestyle of lines, afilled arrow indi-
catedhigherweightthanahollow arrow.

Obviously the high power nodesdo prefereachother
more. Fortunately they still leak enoughcapacityto pre-
vent the network from being disconnected. Notice the
asymmetryin termsof the weightsbetweera high power
and a low power node. Theseasymmetriclinks also
preventthe low answeringpower nodesfrom forming a
cliqueof their own.

We alsoshav whathappendo the final network if ev-
ery nodeusesp = 0.4, thatis doubling the numberof
gueriesthey eachgeneratejn Figure9(b). The network
becomedessconnectecsnodestendto pair up because
thelack of capacityin the system.If we furtherincrease
p for eachnode,the network will eventuallybecomedis-
connectedAs a sidenote, the preciseconfigurationwith
weightsis not entirely deterministicbecausehe answer
ing power of nodesintroducerandomnessHowever, the
generakhapeof thefinal configurationis similar.

Fromthetwo exampleswe seethatSLIC’s greedyap-
proachof adjustingweightsdoindeedcaptureanodesin-
dividual preferencef their neighbors Whatis unclearis
how thesdocally determinedveightsinteracton aglobal
scale.In next sectionwe will shav thateachnodes self-
ish decisiongdo indeedleadto a goodincentive structure
for the systemasa whole wherenodesareencouragedo
sharemore data,give more capacityto othernodes,and
establisimorelinks to increasehe network connectvity.

3

WhenrunningSLIC, a nodewill receve betterserviceif
its neighborgiveit ahighweight. To influenceits neigh-
borsdecisionsa nodehasthreeoptions:

I ncentive Structure

e Increaseansweringpower. By sharingmoredata,a
nodecanbecomeamoreattractie.

e Increasehe numberof edges(or connectvity). By
having moreedgesa neighbors queriescanbe for-
wardedto morenodes,which leadsto morehits for
neighbors’queries.

e Increasethe amount of capacity usedto service
neighbors’queries.By giving morecapacityanode
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Figure 9: Final network for running SLIC on complete graph of 10 nodes with (a) p = 0.2 and (b)

p=04

canforwardmorequeriego reachdistantpartsof the
network.

For the purposeof creatinga good incentive structure,
we alsowant SLIC to reducea nodes serviceif it does
not provide a reasonableamountof resourcein ary of
the above threecateyories. To assesshe effectivenesf
SLIC in establishingan incentive structure,we consider
two utility functions:

1. AvgHits;(u): The averageof numberof hits per
guerygeneratedby nodew in rounds.

2. TotalHits;(u): The total numberof hits for all
queriesgeneratedby nodew in rounds.

For the most part, both utility functionsbehae simi-
larly, thuswe will illustratethat SLIC hasa goodincen-
tive structureby using AvgHits;(u). We will alsohigh-
light scenariosvhereT otal Hits;(u) is a moreappropri-
ate utility function. With thesetwo utility functionsin
mind, we will now demonstrateia simulationthatSLIC
rewardsnodesthat provide moredata,dedicatemoreca-
pacityfor neighbors'queriesandestablishmoreconnec-
tions. Our resultwill also verify that SLIC ostracized
nodeswho do notplay fair.

3.1 Answering Power

To assestheimpactof varyingansweringpower, we con-
ductedsimulationsusing 10 randomlygeneratedyraphs

of 250 nodeswhereaveragenodedegreeis 5. (We also
ranexperimentswith 250 nodepowerlaw topologiesand
largergraphs.Theresultsshowv similar trends but arenot
shavn dueto spacdimitations.) We first ran a baseline
experimentwhereall nodeshave an answeringpower of
0.4, i.e., eachnodehasa 40% chanceof having a hit for
aquery For eachnodeu, p, = 0.1, or dedicating90%
capacityfor servicingneighbors'queries.

After collectingthe baselinedata, we then madeone
of the 250 nodesa probenode For this probenode,we
variedits answeringpower from 0.1 to 0.9. Sincegraph
structureand the location of the probe nodealso influ-
encea nodes quality of service,we ran multiple experi-
mentswith differentgraphsandprobenodes.With these
differentdatapointson differentgraphs simply compar
ing the utility function AvgHits;(u) or Total Hits;(u)
doesnot make sense. Instead,we comparethe relative
improvementor reductionin the the probenodes utility
againsthe baselinedatapoint. In particular we compute
the ratio of the utility of the probenodedivided by the
baselineutility whenthe probenodealsohadananswer
ing power of 0.4. Thusanimprovementratio of greater
thanl impliesthenodehasrecevedbetterservice.Simi-
larly, aratio of lessthan1 meansdiminishedservice.For
this experiment,both AvgHits;(u) and Total Hits;(u)
have the samebehae, sowe will only shav theresultfor
AvgHits;(u).

Figure10givestheresultof our simulationwith theas-
sociatedconfidencantervals. The x-axis shows different
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answeringpower for the probenode. The y-axis shavs
the averageimprovementratio acrossdifferentruns. As
expectedthe numberof hits decreasealmostlinearly to
0 if anodehasa smalleransweringpower thanthe rest
of the network. On the otherhand, providing more an-
sweringpower thanthe restof the network doesincrease
a nodes utility, thoughlessdramatically The datapoint
for the answeringpower 0.4 doesnot have a confidence
interval becausét correspondo the baselineexperiment
whereall theimprovementratiosarel. Fromthis simula-
tion result,we canconcludethata free-loademwho shares
muchlessdatathananaverageuserwill have difficulty in
obtainingquality service.

3.2 Connectivity

The numberof links a node hasdirectly influencesthe
nodesquality of service.Intuitively, if anodeu hasmary
links, thenits queriesareservicedby morenodes.More-
over, whenu forwardsoneof its neighbors query; it will

alsoreachmary nodes;thusthe neighborsof » will also
give a high weightto u aswell, which in turnsleadsto
betterservicefor . To quantifythis intuition, we exam-
ine the utility of the nodesasa function of the nodede-
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Figure 11: Utility versus varying degree.
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Figure 12: Utility of a node with varying p.

nodeswith degreedifferenceof 1. Thusto “guarantee”
a significantimprovementin utility, a nodemustincrease
its numberof links by atleast3 or 4. Noticethattheutility
doesnotincreasdinearly with thenodedegree. Themain
causds thateventuallyanodewill runoutof sparecapac-
ity to keepall of its neighborshappy. The datapointsfor
nodedegreesl3 and15 do not have confidenceantervals
becauseherewasonly onenodeof thatspecificdegree.

3.3 Spare Capacity

The parametelp determineshow mary new queriesare
generatedy a nodeeachround. It alsodeterminesown
muchsparecapacityis givento theneighbors.To seehow

gree(connections)We againusedl0 randomlygenerated this choice of balancingbetweeninjecting new queries

graphsof 250 nodes.

Figure 11 shows the result of the experimentwith
confidenceintervals. On the x-axis is the nodedegree
(i.e., number of connections). The y-axis shows the
raw AvgHits;(u) utility value. (The utility function
Total Hits;(u) behaessimilarly.) Clearly, moreconnec-
tions resultin much betterservice. However, note that
the confidenceintervals do have significantoverlapsfor

andproviding capacityto the neighborsaffect utility, we
first setp = 0.1 for all nodes.We thenpickedoneprobe
nodeandvariedits p value.

Figure 12 shaws the simulationresult. The x-axis is
the p settingfor the probenode. The y-axis shows the
AvgHits;(u) utility. As onewould hope theutility drops
exponentiallyas the nodeincreasests p to pumpmore
gueriesnto the system.However, thisfiguredoesnottell
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Figure 14: Effect of using excess scaling

the whole story Figure 13 shovs the samedataexcept
they-axisnow givestheT otal Hits;(u) utility. We notice
thattheprobenodecanactuallygetmorehits by pumping
in alittle bit morequerieghantherestof thesystem(e.g.,
p = 0.15). It is possible thoughmaynot be desiable, to
preventthis phenomenoliby scalingbacka link’s weight
if the neighboringnodeis generatingoo mary queries.
To prevent this loophole, we previously introduced
the excessscaling modification computeweightscaled
where a node penalizesits neighborfor generatingtoo
mary queries. Figure 14 shows the result of applying
the excessscalingfor both utility functions. The figure
hasboth the scaledand the unscaleddatafor compari-
son, hencefour curves. We notethatthe AvgHits;(u)
utility still dropsoff exponentiallyasthe probenodegen-
eratesmore queries. With excessscaling,we have also
preventedthe probenodefrom gettingmore hits by gen-
eratingmorequerieghanthesystennormof p = 0.1. On
a cautionarynote,in orderfor excessscalingto be effec-
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Figure 15: Effect of processing capacity

tive, anodemusthave several neighborgo choosefrom.
If anodewu only hasoneneighborthatis generatingsx-
cessqueries thennothingwill work exceptfor nodew to
disconnectaindreconnecelsavhere.

3.4 MoreOverall Capacity

A nodemay also obtain more sparecapacityby simply
allocatingor buying moreprocessingapacity In this ex-

perimentwe variedthetotal processingapacityfor asin-

gle probenodefrom 250 to 1750 queriesperround,while

all othernodeshave a capacityof 1000 queriesperround.
When changingthe processingcapacity the probenode
alwaysusesp = 0.1 for generatinghew queries.Thusfor

larger capacity the probenodeis also generatingmore
queries. The resultis shovn in Figure 15. The x-axis
shaws the processingapacityof the probenode. The y-

axis shawvs the improvementratio in termsof total num-
ber of hits, comparedo the baselineof 1000 queriesper
round. Not surprisingly the improvementdropslinearly

whenanodehave lesscapacitythantherest. Ontheother
hand,the improvementdueto having more capacityflat-

tensout. Performancdlattensout becausegventhough
neighboringnodesarepreferringtheprobenodemoreand
more,they still have the sameamountof capacityfor for-

warding the probenodes queriesas before. Therefore,
whentheir capacityareexhaustedno moreimprovement
is possibleregardlesshow muchextra capacitythe probe
nodehas.

35 Remarks

In this sectionwe have demonstratethatusingSLIC re-
sultsin an incentve structurethat encouragesmodesto
sharemore data, provide more capacity and establish



more connections We have performedcontrolledexper
imentswherewe only variedone parameteit a time to
guantifytheeffects.Whenmultiple parameterarechang-
ing, the effectsare not cumulatve. For instance adding
new connectionss likely to be more effective in terms
of increasingutility thansharingmore databecausehe
benefitof reachinga new of group of nodesoutweighs
the benefitof a single nodeproviding a little moredata.
For this precisereasona free-loademwho sharesvery lit-
tle datacanstill thrive in a systemrunning SLIC if it is
willing to provide bandwidththat facilitate other nodes
of reachingeachother We believe this scenariais actu-
ally desirablebecausehe free-loaderis not truly “free-
loading” sinceit is providing valuableserviceto the sys-
temasawhole.

4 Dynamic Environment

The previous sectionhas shavn that SLIC can setupa
goodincentie structureundera staticernvironmentwhere
theoverlaynetwork doesnotchangeln orderfor SLIC to
beusablein practicejt mustalsobeableto adaptquickly
to dynamicoverlay network changesTherearemary is-
suesinvolvedin dealingwith dynamism For example,

e Whenanew nodejoins, which existingnodesshould
it connectto?

e Whena noderecevesa connectionrequestshould
it accepthe connectiorunconditionally?

e Whenanew overlaylink is createdwhatshouldthe
initial SLIC weightbe?

e Shouldanoverlaylink with “very” low SLIC weight
bedropped?

e Shouldan existing nodewith low utility attemptto
createnew overlaylinks to improveits utility?

In this section,we studytwo of the above five questions:
initial weightfor anew overlaylinks andallowing anode
to createnew links if it is unsatisfied.

4.1

Whenanew link is createda key designdecisionis how
to initialize the weight for this link. We could initialize

Initial weight for new links

the weightto 1; however, this would allow free-loaders
to drainresourcesrom the systemby reconnecting.We
couldalsoinitialize theweightto a smallvalue,which un-
fortunatelycreatesa high barrierof entryfor new nodes.
Herewe proposea simplesolutionanda coupleof varia-
tionsfor initializing the weight of edge(u, v) whereu is
anold nodeandw is anew node.

1. Average: Initialize W;(u, v) to bethe averageof the
weights maintainedby nodew. In otherwords, if
nodeu hasd neighborsthenthenew nodew is given
1 of thesparecapacity

2. Average Inverse Initialize W;(u, v) to bethe aver-
ageweightmultiplied by m.

3. Average_Exponential Initialize W (u,v) to be the
averageweightmultiplied by e —AvgHitsi (u)

The Average schemeis fair in that it doesnot bias
againsta new connectionthoughit is susceptibleo free-
loaders. Average_Inverse and Average_Exponentialad-
dresghis concerrby notingthatif anodeis alreadyhappy
with its currentutility, thenthereis little needto take abig
risk in acceptinga new connection.On the otherhand,if
anodeis unhapypy, thenit might aswell try its luck with
anew node. Thusbothvariationsadjuststhe new weight
by a function of the currentutility with differentaggres-
siveness.

To see how thesevariations of the averagescheme
perform, we ran simulationson our 250 nodesrandom
graphswhere eachnodehasan answeringpower of 0.4
andp = 0.1. In thesedynamicexperimentswe first re-
move a nodeand its associateagdgesfrom the graphat
thebeginningandlet the simulationrun until it stabilizes.
We thenadd the removed nodeand edgesbackinto the
network and continuethe simulationto seehow quickly
SLIC responds.We alsovary whetherthe nodebehaes
normally or maliciouslywhenit rejoinsthe network. For
maliciousbehavior, we considettwo casesrejoiningwith
low answeringpowerandrejoiningwith high p value(i.e.,
lesssparecapacity).

For brevity, we only shav the resultsfor one of our
simulationswherea nodeof degree4 joined the network
late and with different behaviors. (Although the exact
numbersvary with differentsimulationsetups,the gen-
eral trendsare identical to the results presentechere.)
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Figure 16: Newly joined nodes

Figure 16 shaws the outcomeof our simulationwhere
the weight for the new edgeis initialized to be the av-

erageweight. The x-axis showvs the numberof rounds
sincethis nodeof degree4 joined. The y-axis shaws its

AvgHits;(u) utility. For referenceto the staticerviron-

ment,thetop curve shaws the utility of the nodeif it was
partof thenetwork sincethebeginning. Thesecondcurve

shaws thatthe utility of the noderapidly approacheghe
staticcasewhenit joinedlateandbehaednormally. The
third andforth curvesillustratethat SLIC will respondo

badbehaior quickly, evenif thebadnodejoinedlateand
wasinitially givenareasonablamountof sparecapacity
by its neighbors.

Of course,by usingthe two variationsof average we
canreducethe resourcedrainedby a maliciousnodeat
the expenseof askinga good nodeto prove itself for a
longerperiod. Figures17 and 18 demonstratehis trade-
off. Figure 17 shaws that if the new nodeis behaing
normally, thenscalingdown the new weightby eitherthe
inverseor an exponentialwill causea delay of about25
roundsbeforethe nodereachests properutility level. At
the sametime, Figure 18 shavs that a maliciousnodeis
not ableto take advantageof the systemasits utility set-
tled down quickly without significantlyexceedingts true
level. Although Average Exponentialdoesperformquite
well in our experiments,we believe Average_lnverse is
moreappropriatdbecauséor large networkswhereutility
valueis high, Average_Exponentiamaybetoo aggressie
in discriminatingagainsinew nodes.
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Figure 17: A new normal node .
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Figure 19: CDF of AvgHits;(u) utility for the infi-
nite growth scenario.

4.2 Respawn Overlay Links

Onefundamentabrinciple in SLIC is to allow nodesto
act selfishly and greedily to increasetheir own utility.
Thusit is also naturalfor a nodeto createnew overlay
links if its own utility is too low. We now examinetwo
variationsof an unsatisfiechodetrying to establishnew
links. Thefirst variation,namedinfinite Growth, allows a
nodeto addasmary links asit wants. The secondvari-
ation,namedRespawrLinks, restrictsa nodeto maintain
the samenodedegree,i.e., when creatinga new link, it
mustdrop an existing one. This secondcaseis perhaps
morerealisticin thateachnodehasa certain“budget”in
thenumberlinks thatthey cansupport.

For the infinite growth variation, we ran a simula-
tion on a 250 noderandomgraphwherea nodewu with
AvgHits;(u) < 4 will periodicallytry to createa new
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link to anothemnode,choseratrandom.Theinitial weight
on the new link is determinedby the Average_Inverse
policy. For this run, all the nodeshave answeringpower
0.4 andp = 0.1. Figures19 and 20 give the result of
the simulation. Figure 19 shows the cumulative distribu-
tion plot of the AvgHits;(u) utility for all nodeswhen
infinite gronth wasallowed andwhenit wasnot. As we
canseeclearly, with infinite growth, almostall nodeshave
AvgHitsu) utility of morethan4, whichis notsurpris-
ing. Thepriceto achieve this level of utility is thatevery
nodehas5 moreconnectionghanbefore. This is evident
from Figure20 whenwe plot the histogramof nodeswith
acertaindegree.We seethe histogramshiftedby about5.

For the respavn links variation, we have to be care-
ful to presere the nodedegree.We usea four-way swap
mechanisnasillustratedin Figure21. Supposeiode A
is unsatisfiedandwantsto createa new link to nodeB.
Node A mustbreakanexistinglink to oneof its neighbor
saynodeC'. Similarly, nodeB mustalsobreakanexisting
link, sayto nodeD, to accepthenew connectiorfrom A.
We thencreatethe link (A, B). We also pair up C' and
D with anew link sincethey bothhave losta connection.
This swapclearlypreseresthenodedegreeat eachnode.

To evaluateSLIC underrespavning, it doesnot make
sensdor all nodesto beidenticalbecausave arejustre-
placingonegraphof agivendegreesequencevith another
of the samedegreesequenceThustherewill notbesig-
nificantchangein termsof utility atall. Insteadwe use
threetypesof nodes: (1) normal nodeswith answering

powerof 0.4 andp = 0.1, (2) lowAP nodeswith answer
ing powerof 0.1 andp = 0.1, and(3) highRhonodeswith
answeringpower 0.4 andp = 0.5. For our simulations,
we used250 nodesrandomgraphswith equalnumberof
nodedor eachtype. Whenanodebreaksalink, it chooses
thelink with thelowestweight.

We conductedsimulationson differentinitial graphs
with respavning wherea node choosesanothernode at
randomwhenit wantsto exchangeneighbors. We also
force a nodeto accepta new link if asled. We use Av-
erage_Inversefor the new edgeweight. For eachrun, we
first ran a simulationfor 5000 rounds. We thenfor each
nodecomputechow its Avg Hits;(u) utility hasimproved
or deterioratedhsa ratio againstthe baselinecomparison
whenthereis no respavning. For brevity, we presenthe
resultfrom onerun in Figure 22. (Otherrunsproduced
similar results.) We plot three cumulative distribution
plots, one for eachtype of nodes(normal, lowAP, and
highRho). The x-axis shavs the improvementratio (e.g.,
biggerthan1 meansbetterutility). They-axisshavsthe
percentag®f nodes. Notice that for a normalnodethat
is behaving properly, 80% of themhave improved utility
(ratio greaterthan 1) afterrespavning. In contrast,70%
of lowAP nodesand80% of highRhonodesexperienced
reductionin utility (ratio lessthan1). Also notice that
thereis a significantgap betweenthe normal nodesand
the maliciousnodesin theirimprovments. Thereforewe
canconfidentlyconcludethatwhenallowing nodesto re-
connect,goodnodeswill derive greatbenefitswhile bad
nodescannottake significantadvantage®f the system.

As previously discussednodesthat give lesscapacity
tothesystemarepenalizednoreseverelythannodesshar
ing lessdata. This intuition is verifiedin Figure22 asthe
lowAP nodesexperiencdessdeteriorationin utility than
highRhonodes. Curiously one might expectthat nodes
with high degreewould achiere betterimprovementratio.
Thisintuition is incorrectascanbeseerin thescatteplot
of node degreeversusimprovementratio in Figure 23.
Thereis no trend or clusteringto draw ary correlation
betweemodedegreeandimprovement.

5 GeneralizingSLIC

The greedySLIC approachs quite general:a nodepro-
videsservice,andin returnrecevesservicefrom others.
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The amountof serviceit providesa neighboris related notionof trustinto hardcurreng by usingpayment-based

to the servicea nodereceves, andthis createshe right

incentves. The paperhasdealt with only one type of

service,answeringqueries,but the idea can be usedfor

other services,e.g., downloadingfiles, indexing content
of nearbynodesdoing computationsetc.

If anodeprovidesa variety of servicege.g.,queryan-
swerngandfile download)onecaneither: (1) aggreyate
serviceg(renderedor received) into a single metric, soa
node cantell the overall level of servicereceved from
othersor (2) runSLICin parallel,whereeachclassof ser
vice is handledseparately For example,in aggrerating
gueryansweringandfile downloadinto a single metric,
a successfufile download can equateto, say 50 search
hits.

6 Related Work

Similar to SLIC’s retaliation-basedapproach, BitTor-
rent[4], a P2Pclient for sharinga singlefile, usesa sim-
ilar ideafor controlling download/uploadratesbetween
participatingclients. Our greedyapproachis also simi-
lar to the gametheoreticapproachof [9] wherelLai et.
al. analyzethe impactof atype of tit-for-tat stratey. In
contrasto ourlocal approachreputation-basedndtrust-
basedsystemsenforcea global structure. For example,
the EigenTrustalgorithm([8] “collects” all pairwise pref-
erencevaluesbetweenpeersandcomputeghe eigervec-
tor as the global reputation. Alternatively, Cornelli et.
al. in [5] proposea voting schemewherea peersolic-
its “votesof confidence"whendecidingbetweenwhich
peersto downloaddatafrom. Onecanalsotranslatethe

22: CDF of utility impr ovement

Figure 23: Node deg. vs.

ideaslike Mojo Nation[11] wherepeersearncreditsfor
providing service.

7 Concluding Remarks

We have demonstratethatour simpleSelfishLink-based
InCentve (SLIC) createsa desirableincentve structure
for unstructured2Pfile sharingsystemsvherenodesin

exchangefor betterserviceareencouragedio sharemore
data, give more capacityto neighboringnodes’queries,
andaddnew overlay links. Moreover, if nodesdynami-
cally adjusttheir links to strive for betterservice,SLIC

respondgjuickly andfairly for nodesthat areplaying by
the rule to improve their quality while not letting mali-

ciousnodestake advantageof the situation.
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