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Abstract

MostPeer-to-Peer(P2P)systemsassumethatall peersare
cooperatingfor thebenefitof thecommunity. However in
practice,thereis a significantportionof peerswho leech
resourcesfrom thesystemwithout contributingany in re-
turn. In this paper, we proposea simple SelfishLink-
basedInCentive (SLIC) mechanismfor unstructuredP2P
file sharingsystemsto createanincentivestructurewhere
in exchangefor betterservice,peersare encouragedto
sharemoredata,givemorecapacityto handleotherpeers’
queries,and establishmore connectionsto improve the
P2Poverlay network. Our SLIC algorithmdoesnot re-
quire nodesto be altruistic and doesnot rely on third
partiesto provideaccurateinformationaboutotherpeers.
We demonstrate,throughsimulation,thatSLIC’s locally
selfishandgreedyapproachis sufficient for thesystemto
evolve into a “good” state.

1 Introduction

Peer-to-Peer(P2P) file-sharing systemsorganize users
into anoverlaynetwork to facilitatetheexchangeof data.
However, currentdeployedsystemslack any “viable” in-
centive structuresfor encouragingusersto behave in the
bestinterestof thecommunity. As a result,variousforms
of abuseandattackhave beenobserved in practice.The
most commononesare free loaders[2] and denial-of-
service(DOS) attacks.A freeloader is a userwho only
downloadsfiles from a P2Pnetwork while never sharing
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any files. Theseusersbecomeleechesanddrainresources
from the community. Unlike free loaderswho only re-
ducestheresourcein thenetwork, therearealsomalicious
userswho launchactiveDOSattacksagainstP2Poverlay
networks. Theseattackstypically take the form of serv-
ing bogusfilesor strainingthenetwork by floodingbogus
queries.

Someresearchershave proposeda global reputation-
basedsystemfor combatingtheseproblems[8, 1, 5, 6,
10]. In sucha system,eachuseris assigneda reputation
by the communitythat reflectsits contribution to andits
participationin thecommunity. This reputationcanthen
beusedto filter outfreeloadersor malicioususers.Others
havesuggestedimposingabarteringeconomy[11, 13] on
theentirecommunitywhereusersexchangeservices.The
economycanbeimplementedasmicro-paymentsor IOU
certificates.

In contrastto building aglobalsystemwith reputations
or economicsthatrequiresusersto cooperateor somecen-
tral authorities,this paperproposesa simple alternative
solutionSLIC (SelfishLink-basedInCentive)whereeach
usercan,and in fact is encouragedto, act selfishly and
greedily. We will show thatSLIC allows anunstructured
P2Poverlay network, suchas Gnutella[7], to “evolve”
into astatewherefreeloadersandattackersareostracized
quickly withoutaskingany userto behaveagainsthisbest
interest.



SLIC operatesby taking advantageof one key prop-
erty of theflooding-basedsearchmechanismusedin un-
structuredP2Poverlaynetwork. In flooding,whenanode
wantsto find a particularpieceof data,it sendsa search
queryto all its neighborson theP2Poverlaynetwork. Its
neighborsthenin turn forwardsthesearchqueryto their
neighbors,andsoforth. Observe that this flooding-based
searchmechanismallows neighboringnodesto control
each other’s accessto the rest of the network. For ex-
ample,considertwo nodes� and � in Figure1 thatshare
an overlay link. In order for node � ’s queriesto reach
othernodesin thenetwork fragment� , node� mustfor-
ward � ’squeries.Similarly, node� canonly reachnodes
in network fragment� if node� forwardsits queries.

SLIC exploits this relationshipby allowing eachnode
to “rate” its neighborsand to usethe ratingsto control
how many queriesfrom eachneighborto processandto
forward on. Intuitively, for node � in Figure1, if � is
providing greatserviceeitherdirectly by � itself or indi-
rectly by nodesreachablevia � in the fragment � , then� would givea high ratingto � andprocessandforward
morequeriesfrom � . Conversely, badservicewould re-
duceratingandthenumberof queriesserviced.In other
words,SLIC usesthis mutualaccesscontrol relationship
asa meansof retaliationif a nodedoesnot play fair or
connectsto nodesthatdo not play fair. To improve their
service,nodesareincentivized to provide contentand/or
to connectto nodesthatprovidecontent.

Our simple approachhas two significantadvantages:
(1) eachuseris greedyin thatheis trying to maximizehis
own advantagein gettingbetterservice;(2) eachuseronly
keepsstatisticsaboutits neighborsanddoesnot rely upon
atrustedauthorityor othersto giveaccurate“reputations”
aboutunknown users. For the remainderof this paper,
we will develop this intuition into our selfishlink-based
incentive mechanism(SLIC). We will show thatSLIC is
effective in controllingfree-loadersandmaliciousnodes.
Our maincontributionsare� proposetheSLICalgorithmthatis usedbyeachnode

to manipulatetherating(Section2)

� illustratethatthe incentivestructurefrom nodesex-
ecutingSLIC doesthe“right thing” (Section3)

� show thatSLIC canrespondquickly whentheover-
lay network is dynamicallychanging(Section4)

2 Basic Algorithm

Informally, SLIC is a generalalgorithmthat operatesin
periods,e.g.,every minute. During eachperiod,a node
hascertaincapacitythat it is willing to use for servic-
ing queriesfrom neighboringnodeson the P2Poverlay.
To distinguishgoodneighborsfrom badones,a node �
maintainsa weight �	�
����
�� for eachneighbor 
 , where��� �	�
����
�� ��� . A weight of

�
indicatesan excellent

neighborwhile a weightof
�

impliesa uselessone.With
theseweights,a node � thenallocatesits capacityto ser-
vice incomingqueriesfrom its neighborsproportionally
to the weights. For instance,if � hastwo links to nodes� and � with weights

�
and
�����

respectively, thenin this
periodnode � will give �� of its capacityto queriesfrom
node� and �� of its capacityto queriesfrom node� .

At theendof a period,eachnodereevaluatesits opin-
ion, or weights,of its neighborsbasedon how muchser-
vice the neighborshad provided during the currentpe-
riod. In particular, we measurethenumberof queryhits
thata nodehasreceivedfrom eachneighbor. A hit in this
casemeansa pieceof datathat satisfiesa searchquery.
If aneighborgavemoreservicethanpreviouslyexpected,
then the correspondingweight will increase. Similarly,
less servicewill result in lower weight. Since quality
of servicemay fluctuatefrequently, SLIC usesan expo-
nential decaymechanismfor updatingweights. Specif-
ically, if �	�
����
�� denotesthe weight usedin the pre-
vious period, � �!�
����
�� denotesthe new weight for the
next period, and "#�
����
�� denotesthe quality of service
from neighbor 
 during this period, then � �$�%�&�'
(�*)+ �	�%�&�'
(�(,-� ��. + �/"#�
����
�� for some+ where

�10 + 02� .
The weight adjustmentand the capacityallocationin

the SLIC algorithm createa feedbacksystem. In other
words,if node � is receiving mostof its queryhits from
node 
 , then � will reciprocateby increasingthe weight�	�
����
�� andreducingotherweights.As a result,node �
will givemostof its sparecapacityto handlequeriesfrom
 . In this section,we first introducea simplemodeland
somenotationfor formally describingthealgorithmin the
context of an unstructuredP2Pfile sharingsystem. We
thengive thedetailsof theSLIC algorithmstatedabove.
We finish by illustrating how SLIC works throughtwo
examples.
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2.1 A Simple Model and Notation

We usea very simplemodelto capturethekey character-
isticsof an unstructuredP2Pfile sharingsystemthatare
relevantto our studyandsimulation.We modeltheover-
lay network asa graph 34)5�$67�'89� . The vertex set 6
representsnodes(users)in the network. The edgeset 8
representstheoverlaylinks.

We modeltheperiodicbehavior of SLIC asnodesop-
eratingin rounds;althoughthe roundsdo not have to be
synchronized,for simplicity, we will assumesynchrony
in this paper. During a single round, eachnode � can
handleup to :<; queries.This capacity:=; is dividedbe-
tweengeneratingnew queriesandansweringqueriesfrom
theneighbors.Thusa nodegeneratingtoo many queries
will have little capacityto processand forward queries
from its neighbors,and vice versa. We use >?; , where�@� >(; �A� , to denotethe fraction of capacityusedby
node � to generatenew queries.Thusa maliciousnode
thatfloodsthenetwork with queriesis capturedby anode
with >B) � . Herewe have assumedthat eachnodecan
generate> ;DC : ; querieseachround. In practicewhere
the P2Poverlay network consistsof super-nodes1, there
shouldbe enoughnew queriesfrom clients of a super-
node. Moreover, even if a node generatesfewer new
queries,it still canusetheextracapacityto serviceneigh-
bors’ queries. If a nodereceivesmore than :<; queries
from its neighbors,it canchoosewhich :<; queriesto ac-
cept. Whenchoosingqueriesfrom a single link, we as-
sumenodeswill alwayspreferquerieswith high time-to-
live(TTL). (Previouswork in [12] showedthatpreferring
highTTL queriesresultin themostqueriesprocessed.)

We model the flooding-basedsearchmechanismasa
simpleforwardingstepwhereeachnode � sendsits : ;
querieschosenduringroundE to its neighborsfor process-
ing duringround EF, � . In theprocessof this forwarding
step,eachquery’s TTL is decremented.If a query has
TTL
�
, it is removedfrom thesystem.

Wealsomodeltheamountof datathatanode
 is shar-
ing by aparameterwecall theansweringpower �HG where�1� �IG �*� . Thisansweringpowerrepresentstheproba-
bility of node
 having ahit thatsatisfiesaquery. In other
words,a large �IG valuemeansnode 
 is sharingmany
files. Similarly, a low �IG value(e.g.,

�
) representsa free

1A super-nodeis ahighcapacitynodethatactsasaproxyfor a large
numberof slower or low capacitynodes.

loader. Notethatwehavesimplifiedtheansweringpower
by assumingthata nodeis equallylikely to havea hit for
any queries,thusweareignoringclusteringeffectsin data
sharedby users.We alsoassumethateachnodecanonly
contributezeroor onehit.

In this model, we have only capturednodecapacity,
query generation,query propagation,and likelihood of
having a hit at individual nodes. We are not modeling
theactualfile downloads.Section5 briefly addresseshow
to generalizeour SLIC algorithmfor handlingfile down-
loads. We alsousethe following notationin describing
our algorithm.

� 8 ; denotesthesetof edgesfrom node� .
� �KJL�
����
�� denotesthe weight of the link �
����
�� in

round E .
�NM J �
�O� denotesthesetof queriesinitiatedby � whose

TTLs have expired during round E . For our simple
model, nodescan determineexactly which queries
have expired by the roundnumber. In practice,we
canuseafixedtime-outfor thispurpose.

�BP J �
����
�� denotesthe numberof hits for query P that
werereceivedfrom thelink �
����
�� by round E .
�@Q denotesthemaximumTTL for eachquery.

�B+ denotestheexponentialdecayrate,e.g.,
��� R

.

�BS J �
����
�� denotethenumberof queriesgeneratedby
node
 thatnode� decideto processin round E .
� 3 J �%�T� denotethe numberof queriesnode � gener-

atedin round E .
2.2 Description of the Algorithm

TheSLIC algorithmhastwo components:(1) how nodes
operatewhileusingtheweights,and(2)how nodesupdate
the weightseachround. Figure 2 provides the pseudo-
codefor how nodesoperatewhen runningSLIC. When
thesystemfirst starts,all weights �KU?�%�&�'
(� areinitialized
to
�
. Subsequently, during eachround, nodesfirst use

someof theircapacityto generatenew queriesasin step
�
.

Thenumberof new queriesis controlledby theparameter> ; . As mentionedpreviously, amaliciousnodethatfloods
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During round E , node� performsthefollow actions:

1: generate>?; C : new queries
2: �KV%W/V%XZYF)*[*\ ;^] GZ_a`^b#c �KJL�
����
��
3: for eachedge�%�&�'
(�=de8 ; do
4: Processandforward � �f. >?;(��: Chgji \ ;^] GZ_gjkml$kmn�o queries

with thehighestTTL from thelink �
����
��
5: end for
6: if therearestill sparecapacity, repeatstepsp through�

to divide thesparecapacity.
7: Tally numberof hits for newly expiredqueriesgener-

atedby � , i.e., M J'�
�O� .
8: for eachedge�%�&�'
(�=de8 ; do
9: �KJrq � �
����
��7)tsvuxwzy{�{|/} ~H}�E�����|��$��J'�%�&�'
(��� M J'�
�O���

10: end for

Figure 2: Pseudo-code for node operation.

Procedure svuxwzy{�{|/} ~H}�E�����|��$�	�%�&�'
(��� M J �%�T�'�
1: for eachedge�%�&� � ��d�8�; do

2: "{�%�&� � �7) �� i `^� i \ ; _
P �%�&� � �[ \ ;^] � _!`^b c P J �
�������

3: end for
4: "�� XZ� )������I��"#�
��� � �����%�&� � ��d�8�;{�
5: return + C �	�
����
��F,�� �j. + � "#�
����
��"�� XZ�

Figure 3: Pseudo-code for computing new
weight

thenetwork with queriesis equivalentto having alarge >?;
value.

Oncenodeshave generatedtheir new queries,in stepsp through
�
, eachnodedividesthe remainingcapacities

proportionally, accordingto the weights,amongits links
to processremotequeriesfrom neighbors.Note,however,
that it is possiblefor a nodeto still have sparecapacity
afterstepsp through

�
. For example,supposetheweights

dictatethat node � shouldchoose
�����

queriesfrom link�
����
�� . If node 
 only sends
���

queries,thentherewould
beanunusedcapacityof

���
queries.In the rareeventof

having unusedcapacity, wereallocatethecapacityamong
theremaininglinks asin step � .

After nodeshave chosenwhich queriesto processand
forward,in steps� through

���
, eachnode� thenconsiders

Procedure �L�v�¡ (¢�£a¤ ¥=¤Z¦¨§^©�£ ª«�L¬^­m¤Z®�¯%°±¯¨¢#²$³^´'²/µ�¶a¯¨¢�´a´
1: for eachedge ¯¨¢{²a·�´�¸1¹7º do

2: »�¯¨¢#²a·�´O¼ �½«¾x¿ i!À º�Á
Â ¯¨¢#²a·�´[ À º�Ã ÄZÁ ¾xÅ c Â ¯¨¢#²aÆ�´

3: end for
4: »��Ç¬�·È¼-ÉÈÊ�Ë7Ì�»�¯¨¢{²a·�´«Í�¯¨¢#²a·�´&¸1¹ º^Î .
5: if ÏT¶a¯¨¢#²a³^´�Ð-Ñ�¶a¯¨¢�´ then

6: return ÒDÓZ°±¯¨¢#²!³^´�ÔÕ¯!Öh×ØÒF´ Ñ ¶ ¯¨¢�´Ñ ¶ ¯¨³^´ »�¯¨¢#²�³^´»��Ç¬�·
7: else

8: return ÒDÓZ°±¯¨¢#²!³^´�ÔÕ¯!Öh×ØÒF´ »�¯¨¢{²a³^´»��Ç¬�·
9: end if

Figure 4: Pseudo-code for computing new
weight with excess scaling

its own queries M JL�
�O� whoseTTLs have expired at the
currentround E . Node � usesthestatisticson how many
hits for thequeriesin M J��%�T� werereceivedfrom eachlink
to updatethelink weights.

Thereare many ways to perform this weight update.
Figure3 shows thepseudo-codefor onesuchupdatepro-
cedure.In this case,for eachquery P d M J �
�O� , we first
determinethe fraction of hits contributedby a particular
neighbor
 . Thecontributionof a link �
����
�� in this round"{�%�&�'
(� is thensimply thesumof thesefractionsover all
queriesin M J �
�O� asin step p . Oncewe have the contri-
bution for eachlink, we find the maximumcontribution
by any link " � XZ� in step Ù . We finally computethe new
weightin step

�
usinganexponentialdecayrateof + with

thenew contribution "{�%�&�'
(� normalizedby themaximum" � XZ� . Besidestheweightadjustmentshown in Figure3,
wealsotriedcomputing"#�
����
�� astheraw numberof hits
or thenumberof querieswith at leastonehit. Bothvaria-
tionsyield similar results.

The computeweight procedurein Figure 3 has one
weakness.Supposethat accordingto node � ’s weights,
node � decidesto processs queriesfrom its link with
a neighboringnode 
 . Also supposethat all nodesare
generatingÚ� queriesper round. Now node 
 could take
advantageof thesituationby generatingmoreof its own
queries(say

� ÚÛ queries)ratherthanforwardingits neigh-
bors’ queries,thusgettingmorehits for its queries.This
exploitation is possiblebecausenode 
 can continueto
processthesamenumberof queriesfrom node� asbefore
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Figure 5: Example netw ork of p white nodes with>Ç) ����� and black node with >1) ��� R
to maintainits weightwith � . This situationis undesir-
ablebecausein actingselfishly, all nodesmay decideto
generatemorequeries,which causethesystemto operate
in a lessefficientmanner. Wewill illustratethisweakness
in detail in Section3.3. To combatthis undesirablebe-
havior, we introducea modificationcalledexcessscaling
whosepseudocodeis shown in Figure4.

Underexcessscaling,node � penalizesa neighboring
node 
 if � is processingmore queriesfrom 
 than the
numberof queries � generateditself, i.e., S J �
����
��ÝÜ3 J �
�O� . For instance,if � is generating

���
queriesper

round, but happensto process p � queriesfrom 
 per
round,then � shouldpenalize
 . Thepenaltydependson
how many queriesweregeneratedby theneighbor, andis
capturedin step� in Figure4.

As we will seein Section3.3, this modificationis suf-
ficient to discouragenodesfrom generatingmorequeries
thanthesystemnorm.

During our SLIC evaluation,we noticedthat the per
roundcontribution "{�%�&�'
(� , ascomputedin step p of com-
puteweight, is verynoisybecauseof thestochasticnature
of thenumberof hits a nodeprovides. To reducenoise,
insteadof usingthesingleroundcontribution, we keepa
moving window of

���
roundsandusetheaverageof the

contributionsin thiswindow.

2.3 A Simple Example

To illustratehow weightschangeover timewhenrunning
SLIC, let usbegin with a simpleexampleof threenodes
asshown in Figure5. The threenodesareconnectedin
a ring. The two white nodesareusing

�^�?Þ
of their ca-

pacityto generatenew queries,whereastheblacknodeis
trying to getextra serviceby using

R^�?Þ
of its capacityto

generatenew queries.All threenodeshave ananswering
powerof

�
, i.e.,everyquerywill havea hit at eachnode.

Intuitively, we hopethat whenrunningSLIC, the two
white nodeswill detectthat the blacknodeis dedicating
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Figure 6: Weight adjustments by the white node
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Figure 7: Weight adjustments by the black node

fewerresourceto processtheirqueriesandretaliateby re-
ducing their servicefor the black node’s queries. And
indeed,this situationdoesoccur. Figure 6 shows how
a white nodeadjustits weightsasa function time. The
dashedcurve correspondsto the link to the other white
node,andthe solid curve representthe link to the black
node. The x-axis gives the round number. The y-axis
shows the weight. As expected,the white nodequickly
reducesits weight for the black nodewhile booststhe
weight for the otherwhite node. It is alsointerestingto
notethat the weight for the black nodedoesnot drop to�
, asit stabilizesaround

��� ���
. Thereasonis thatalthough

the black nodeis generatingmorequeries,it is still pro-
viding someservicewith its

���?Þ
sparecapacity, thusget-

ting a smallamountof servicein return.
For completeness,weshow how theblacknodeadjusts

its weightfor thewhite nodesin Figure7. Sinceit is get-
ting thesamekind of servicefrom bothwhite nodes,the
weightsareboostedto

�
. Notethatin bothFigures6 and

7, theweightsinitially dropsbeforereaching
�
. Thisdrop

is thesideeffectof ourimplementationthatusesamoving
window of size

���
for computingtheper-roundcontribu-

tion. Whenthe simulationstartsinitially, the first round
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time for a complete graph of
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nodes.

hasazerocontributionbecausenoquerieshasbeenprop-
agatedyet. The effect of this initial zero lingersaround
until it expiresfrom themoving window.

2.4 A More Involved Example

Now considera fully connectedgraphof
���

nodeswhere
eachnodehas >à) ��� p , i.e., devotes á �?Þ capacityto the
others.Supposewe let

�
nodeshave anansweringpower

of
��� á and the other

�
nodeswith answeringpower of���r�

. RunningSLIC on this network, one might expect
thenodesto form two cliquesof five nodes:onefor high
answeringpowernodesandonefor low answeringpower
nodes.However, thatis not true.

Figure8 illustrateshow theweightschangefor a node
with high answeringpower over time. The x-axis gives
the roundnumber. The y-axis givesthe weights. There
are
R

curves,onefor eachlink to theothernodes.Initially,
the weightsfor links to the high answeringpower nodes
increasewhile the weightsfor the low answeringpower
nodesdecreasedramatically. However, the weights for
low answeringpower nodesdo not all go to

�
; severalof

themstabilizesaround
���r�

. The reasonfor this stability
is becausesomelow answeringpower nodesdecidedto
processall queriesfrom ahighpowernode,thusensuring
its correspondingweightdoesnotdiminishto

�
.

An interestingquestion,then,is whatkind of network
results from running SLIC on this

���
nodescomplete

graph. Figure9(a)shows the final network with weights
for eachedge.Theedgesnotshown haveweight

�
. In this

figure,thehigh answeringpowernodesarecoloredblack
andlow answeringpower nodeswhite. The style of the
linesandarrows indicatedifferentweights.To helpdeci-

pherthedatain thefigure,solid lineshavehigherweights
thandashedlineswhich have higherweightsthandotted
lines. Also for thesamestyleof lines,a filled arrow indi-
catedhigherweightthanahollow arrow.

Obviously the high power nodesdo prefereachother
more. Fortunately, they still leakenoughcapacityto pre-
vent the network from being disconnected.Notice the
asymmetryin termsof theweightsbetweena high power
and a low power node. Theseasymmetriclinks also
prevent the low answeringpower nodesfrom forming a
cliqueof their own.

We alsoshow whathappensto thefinal network if ev-
ery nodeuses >2) ��� Ù , that is doubling the numberof
queriesthey eachgenerate,in Figure9(b). The network
becomeslessconnectedasnodestendto pair up because
the lack of capacityin thesystem.If we further increase> for eachnode,thenetwork will eventuallybecomedis-
connected.As a sidenote,thepreciseconfigurationwith
weightsis not entirelydeterministicbecausethe answer-
ing power of nodesintroducerandomness.However, the
generalshapeof thefinal configurationis similar.

Fromthetwo examples,we seethatSLIC’s greedyap-
proachof adjustingweightsdoindeedcaptureanode’sin-
dividual preferenceof their neighbors.Whatis unclearis
how theselocally determinedweightsinteractonaglobal
scale.In next section,wewill show thateachnode’sself-
ish decisionsdo indeedleadto a goodincentivestructure
for thesystemasa wholewherenodesareencouragedto
sharemoredata,give morecapacityto othernodes,and
establishmorelinks to increasethenetwork connectivity.

3 Incentive Structure

WhenrunningSLIC, a nodewill receive betterserviceif
its neighborsgiveit ahighweight.To influenceits neigh-
borsdecisions,anodehasthreeoptions:� Increaseansweringpower. By sharingmoredata,a

nodecanbecomemoreattractive.� Increasethe numberof edges(or connectivity). By
having moreedges,a neighbor’squeriescanbefor-
wardedto morenodes,which leadsto morehits for
neighbors’queries.� Increasethe amount of capacity used to service
neighbors’queries.By giving morecapacity, a node
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Figure 9: Final netw ork for running SLIC on complete graph of
���

nodes with (a) >B) ��� p and (b)>Ç) ��� Ù
canforwardmorequeriesto reachdistantpartsof the
network.

For the purposeof creatinga good incentive structure,
we alsowant SLIC to reducea node’s serviceif it does
not provide a reasonableamountof resourcein any of
theabove threecategories.To assesstheeffectivenessof
SLIC in establishingan incentive structure,we consider
two utility functions:

1. �H
^��âeE!|�ã J �
�O� : The averageof numberof hits per
querygeneratedby node� in round E .

2. äHux|/å(æ$âeE!|�ã J �
�O� : The total number of hits for all
queriesgeneratedby node� in round E .

For the mostpart, both utility functionsbehave simi-
larly, thuswe will illustratethatSLIC hasa goodincen-
tive structureby using ��
���âeE!|�ã J �
�O� . We will alsohigh-
light scenarioswhere äHux|/å(æ$âeE!|�ã J �%�T� is a moreappropri-
ate utility function. With thesetwo utility functionsin
mind, we will now demonstratevia simulationthatSLIC
rewardsnodesthatprovide moredata,dedicatemoreca-
pacityfor neighbors’queries,andestablishmoreconnec-
tions. Our result will also verify that SLIC ostracized
nodeswho do not play fair.

3.1 Answering Power

To assesstheimpactof varyingansweringpower, wecon-
ductedsimulationsusing

���
randomlygeneratedgraphs

of p �^� nodeswhereaveragenodedegreeis
�
. (We also

ranexperimentswith p �^� nodespowerlaw topologiesand
largergraphs.Theresultsshow similar trends,but arenot
shown dueto spacelimitations.) We first ran a baseline
experimentwhereall nodeshave an answeringpower of��� Ù , i.e., eachnodehasa Ù �?Þ chanceof having a hit for
a query. For eachnode � , > ; ) ���r� , or dedicating

R��?Þ
capacityfor servicingneighbors’queries.

After collecting the baselinedata,we thenmadeone
of the p ��� nodesa probenode. For this probenode,we
variedits answeringpower from

���ç�
to
��� R

. Sincegraph
structureand the location of the probenodealso influ-
encea node’s quality of service,we ran multiple experi-
mentswith differentgraphsandprobenodes.With these
differentdatapointson differentgraphs,simply compar-
ing the utility function ��
���âeE!|�ã�J'�
�O� or äHux|/å(æ%âàE�|�ã�J/�%�T�
doesnot make sense. Instead,we comparethe relative
improvementor reductionin the the probenode’s utility
againstthebaselinedatapoint. In particular, we compute
the ratio of the utility of the probenodedivided by the
baselineutility whentheprobenodealsohadananswer-
ing power of

��� Ù . Thusan improvementratio of greater
than
�

impliesthenodehasreceivedbetterservice.Simi-
larly, a ratioof lessthan

�
meansdiminishedservice.For

this experiment,both ��
���âeE!|�ã J �
�O� and äHux|/å(æ%âàE�|�ã J �%�T�
havethesamebehave,sowewill only show theresultfor��
��(âeE!|�ã J �%�T� .

Figure10givestheresultof oursimulationwith theas-
sociatedconfidenceintervals. Thex-axisshows different
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Figure 10: Utility versus varying answering
power.

answeringpower for the probenode. The y-axis shows
the averageimprovementratio acrossdifferentruns. As
expected,thenumberof hits decreasesalmostlinearly to�

if a nodehasa smalleransweringpower than the rest
of the network. On the otherhand,providing morean-
sweringpower thantherestof thenetwork doesincrease
a node’s utility, thoughlessdramatically. Thedatapoint
for the answeringpower

��� Ù doesnot have a confidence
interval becauseit correspondto thebaselineexperiment
whereall theimprovementratiosare

�
. Fromthissimula-

tion result,wecanconcludethata free-loaderwhoshares
muchlessdatathananaverageuserwill havedifficulty in
obtainingquality service.

3.2 Connectivity

The numberof links a nodehasdirectly influencesthe
node’squalityof service.Intuitively, if anode� hasmany
links, thenits queriesareservicedby morenodes.More-
over, when � forwardsoneof its neighbor’squery, it will
alsoreachmany nodes;thustheneighborsof � will also
give a high weight to � aswell, which in turns leadsto
betterservicefor � . To quantify this intuition, we exam-
ine the utility of the nodesasa function of the nodede-
gree(connections).Weagainused

���
randomlygenerated

graphsof p ��� nodes.
Figure 11 shows the result of the experiment with

confidenceintervals. On the x-axis is the nodedegree
(i.e., number of connections). The y-axis shows the
raw ��
��(âàE�|�ã�J'�
�O� utility value. (The utility functionäHux|/å(æ%âàE�|�ã�Ja�%�T� behavessimilarly.) Clearly, moreconnec-
tions result in much betterservice. However, note that
the confidenceintervals do have significantoverlapsfor
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Figure 12: Utility of a node with varying > .
nodeswith degreedifferenceof

�
. Thus to “guarantee”

a significantimprovementin utility, a nodemustincrease
its numberof links by atleastê or Ù . Noticethattheutility
doesnot increaselinearlywith thenodedegree.Themain
causeis thateventuallyanodewill runoutof sparecapac-
ity to keepall of its neighborshappy. Thedatapointsfor
nodedegrees

� ê and
�x�

do not have confidenceintervals
becausetherewasonly onenodeof thatspecificdegree.

3.3 Spare Capacity

The parameter> determineshow many new queriesare
generatedby a nodeeachround. It alsodetermineshow
muchsparecapacityis givento theneighbors.To seehow
this choiceof balancingbetweeninjecting new queries
andproviding capacityto theneighborsaffect utility, we
first set >ë) ���r� for all nodes.We thenpickedoneprobe
nodeandvariedits > value.

Figure 12 shows the simulationresult. The x-axis is
the > settingfor the probenode. The y-axis shows the��
��(âeE!|�ã�J��%�T� utility. As onewouldhope,theutility drops
exponentiallyas the nodeincreasesits > to pumpmore
queriesinto thesystem.However, thisfiguredoesnot tell
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Figure 14: Effect of using excess scaling

the whole story. Figure13 shows the samedataexcept
they-axisnow givesthe äIux|/å?æ$âeE!|�ã J �
�O� utility. Wenotice
thattheprobenodecanactuallygetmorehitsby pumping
in alittle bit morequeriesthantherestof thesystem(e.g.,>ï) ���r��� ). It is possible,thoughmaynot bedesirable, to
preventthis phenomenonby scalingbacka link’s weight
if theneighboringnodeis generatingtoo many queries.

To prevent this loophole, we previously introduced
the excessscaling modification computeweightscaled
wherea nodepenalizesits neighborfor generatingtoo
many queries. Figure 14 shows the result of applying
the excessscalingfor both utility functions. The figure
hasboth the scaledand the unscaleddatafor compari-
son,hencefour curves. We note that the ��
��(âàE�|�ã J �
�O�
utility still dropsoff exponentiallyastheprobenodegen-
eratesmorequeries. With excessscaling,we have also
preventedtheprobenodefrom gettingmorehits by gen-
eratingmorequeriesthanthesystemnormof >Ç) ���ç� . On
a cautionarynote,in orderfor excessscalingto beeffec-
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Figure 15: Effect of processing capacity

tive, a nodemusthave severalneighborsto choosefrom.
If a node � only hasoneneighborthat is generatingex-
cessqueries,thennothingwill work exceptfor node � to
disconnectandreconnectelsewhere.

3.4 More Overall Capacity

A nodemay also obtainmoresparecapacityby simply
allocatingor buyingmoreprocessingcapacity. In thisex-
periment,wevariedthetotalprocessingcapacityfor asin-
gleprobenodefrom p ��� to

� � ��� queriesperround,while
all othernodeshaveacapacityof

�����^�
queriesperround.

Whenchangingthe processingcapacity, the probenode
alwaysuses>Ç) ���r� for generatingnew queries.Thusfor
larger capacity, the probenodeis also generatingmore
queries. The result is shown in Figure 15. The x-axis
shows theprocessingcapacityof theprobenode.They-
axis shows the improvementratio in termsof total num-
berof hits, comparedto thebaselineof

���^���
queriesper

round. Not surprisingly, the improvementdropslinearly
whenanodehavelesscapacitythantherest.Ontheother
hand,the improvementdueto having morecapacityflat-
tensout. Performanceflattensout because,even though
neighboringnodesarepreferringtheprobenodemoreand
more,they still have thesameamountof capacityfor for-
warding the probenode’s queriesasbefore. Therefore,
whentheir capacityareexhausted,no moreimprovement
is possibleregardlesshow muchextra capacitytheprobe
nodehas.

3.5 Remarks

In this sectionwe have demonstratedthatusingSLIC re-
sults in an incentive structurethat encouragesnodesto
sharemore data, provide more capacity, and establish
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moreconnections.We have performedcontrolledexper-
imentswherewe only variedoneparameterat a time to
quantifytheeffects.Whenmultipleparametersarechang-
ing, the effectsarenot cumulative. For instance,adding
new connectionsis likely to be more effective in terms
of increasingutility thansharingmoredatabecausethe
benefitof reachinga new of group of nodesoutweighs
the benefitof a singlenodeproviding a little moredata.
For this precisereason,a free-loaderwho sharesvery lit-
tle datacanstill thrive in a systemrunningSLIC if it is
willing to provide bandwidththat facilitate other nodes
of reachingeachother. We believe this scenariois actu-
ally desirablebecausethe free-loaderis not truly “free-
loading” sinceit is providing valuableserviceto thesys-
temasa whole.

4 Dynamic Environment

The previous sectionhasshown that SLIC can setupa
goodincentivestructureunderastaticenvironmentwhere
theoverlaynetwork doesnotchange.In orderfor SLIC to
beusablein practice,it mustalsobeableto adaptquickly
to dynamicoverlaynetwork changes.Therearemany is-
suesinvolvedin dealingwith dynamism.For example,� Whenanew nodejoins,whichexistingnodesshould

it connectto?

� Whena nodereceivesa connectionrequest,should
it accepttheconnectionunconditionally?

� Whena new overlaylink is created,whatshouldthe
initial SLIC weightbe?

� Shouldanoverlaylink with “very” low SLIC weight
bedropped?

� Shouldan existing nodewith low utility attemptto
createnew overlaylinks to improveits utility?

In this section,we studytwo of theabove five questions:
initial weightfor anew overlaylinks andallowing anode
to createnew links if it is unsatisfied.

4.1 Initial weight for new links

Whena new link is created,a key designdecisionis how
to initialize the weight for this link. We could initialize

the weight to
�
; however, this would allow free-loaders

to drain resourcesfrom the systemby reconnecting.We
couldalsoinitialize theweightto asmallvalue,whichun-
fortunatelycreatesa high barrierof entry for new nodes.
Herewe proposea simplesolutionanda coupleof varia-
tions for initializing theweightof edge �
����
�� where � is
anold nodeand 
 is a new node.

1. Average: Initialize � J �
����
�� to betheaverageof the
weightsmaintainedby node � . In other words, if
node� hasñ neighbors,thenthenew node
 is given�ò of thesparecapacity.

2. Average Inverse: Initialize � J �
����
�� to be the aver-
ageweightmultipliedby �ó G«ô«õ=JçV%ö i \ ; _ .

3. Average Exponential: Initialize �	�%�&�'
(� to be the
averageweightmultipliedby }^÷ ó G«ôZõ<JçV%ö i \ ; _

The Average schemeis fair in that it doesnot bias
againsta new connection,thoughit is susceptibleto free-
loaders. Average Inverse and Average Exponentialad-
dressthisconcernby notingthatif anodeis alreadyhappy
with its currentutility, thenthereis little needto takeabig
risk in acceptinga new connection.On theotherhand,if
a nodeis unhappy, thenit might aswell try its luck with
a new node.Thusbothvariationsadjuststhenew weight
by a functionof the currentutility with differentaggres-
siveness.

To see how thesevariationsof the averagescheme
perform, we ran simulationson our p ��� nodesrandom
graphswhereeachnodehasan answeringpower of

��� Ù
and >K) ���r� . In thesedynamicexperiments,we first re-
move a nodeandits associatededgesfrom the graphat
thebeginningandlet thesimulationrununtil it stabilizes.
We thenadd the removed nodeandedgesback into the
network andcontinuethe simulationto seehow quickly
SLIC responds.We alsovary whetherthe nodebehaves
normallyor maliciouslywhenit rejoinsthenetwork. For
maliciousbehavior, weconsidertwo cases:rejoiningwith
low answeringpowerandrejoiningwith high > value(i.e.,
lesssparecapacity).

For brevity, we only show the resultsfor one of our
simulationswherea nodeof degree Ù joinedthenetwork
late and with different behaviors. (Although the exact
numbersvary with differentsimulationsetups,the gen-
eral trendsare identical to the resultspresentedhere.)
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Figure 16: Newly joined nodes
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Figure 17: A new normal node .
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Figure 18: A new low AP node

Figure 16 shows the outcomeof our simulation where
the weight for the new edgeis initialized to be the av-
erageweight. The x-axis shows the numberof rounds
sincethis nodeof degree Ù joined. The y-axis shows its��
���âeE!|�ã�J'�
�O� utility. For referenceto thestaticenviron-
ment,thetop curveshows theutility of thenodeif it was
partof thenetwork sincethebeginning.Thesecondcurve
shows that the utility of the noderapidly approachesthe
staticcasewhenit joinedlateandbehavednormally. The
third andforth curvesillustratethatSLIC will respondto
badbehavior quickly, evenif thebadnodejoinedlateand
wasinitially givena reasonableamountof sparecapacity
by its neighbors.

Of course,by usingthe two variationsof average,we
can reducethe resourcedrainedby a maliciousnodeat
the expenseof askinga good nodeto prove itself for a
longerperiod. Figures17 and18 demonstratethis trade-
off. Figure 17 shows that if the new nodeis behaving
normally, thenscalingdown thenew weightby eitherthe
inverseor an exponentialwill causea delayof about p �
roundsbeforethenodereachesits properutility level. At
the sametime, Figure18 shows that a maliciousnodeis
not ableto take advantageof thesystemasits utility set-
tleddown quickly withoutsignificantlyexceedingits true
level. AlthoughAverage Exponentialdoesperformquite
well in our experiments,we believe Average Inverse is
moreappropriatebecausefor largenetworkswhereutility
valueis high,Average Exponentialmaybetoo aggressive
in discriminatingagainstnew nodes.
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Figure 19: CDF of �H
^��âeE!|�ã J �%�T� utility for the infi-
nite growth scenario.

4.2 Respawn Overlay Links

Onefundamentalprinciple in SLIC is to allow nodesto
act selfishly and greedily to increasetheir own utility.
Thus it is also naturalfor a nodeto createnew overlay
links if its own utility is too low. We now examinetwo
variationsof an unsatisfiednodetrying to establishnew
links. Thefirst variation,namedInfiniteGrowth, allowsa
nodeto addasmany links asit wants. The secondvari-
ation,namedRespawnLinks, restrictsa nodeto maintain
the samenodedegree,i.e., whencreatinga new link, it
mustdrop an existing one. This secondcaseis perhaps
morerealisticin thateachnodehasa certain“budget” in
thenumberlinks thatthey cansupport.

For the infinite growth variation, we ran a simula-
tion on a p ��� noderandomgraphwherea node � with��
��(âeE!|�ã�J��%�T� 0 Ù will periodically try to createa new
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Figure 20: Degree histogram for the infinite
growth scenario.

link to anothernode,chosenatrandom.Theinitial weight
on the new link is determinedby the ��
(}�ùxå���} "^úO
(}�ù�ã�}
policy. For this run, all thenodeshave answeringpower��� Ù and >±) ���r� . Figures19 and 20 give the result of
thesimulation.Figure19 shows thecumulative distribu-
tion plot of the �H
^��âeE!|�ã J �
�O� utility for all nodeswhen
infinite growth wasallowedandwhenit wasnot. As we
canseeclearly, with infinite growth,almostall nodeshave��
���âeE!|�ã \ �O� utility of morethan Ù , which is not surpris-
ing. Thepriceto achieve this level of utility is thatevery
nodehas

�
moreconnectionsthanbefore.This is evident

from Figure20whenweplot thehistogramof nodeswith
acertaindegree.Weseethehistogramshiftedby about

�
.

For the respawn links variation, we have to be care-
ful to preserve thenodedegree.We usea four-way swap
mechanismasillustratedin Figure21. Supposenode �
is unsatisfied,andwantsto createa new link to node � .
Node � mustbreakanexistinglink to oneof its neighbor,
saynode: . Similarly, node� mustalsobreakanexisting
link, sayto nodeû , to acceptthenew connectionfrom � .
We thencreatethe link �%�È�L�z� . We alsopair up : andû with a new link sincethey bothhave lost aconnection.
Thisswapclearlypreservesthenodedegreeateachnode.

To evaluateSLIC underrespawning, it doesnot make
sensefor all nodesto beidenticalbecausewe arejust re-
placingonegraphof agivendegreesequencewith another
of thesamedegreesequence.Thustherewill not besig-
nificant changein termsof utility at all. Instead,we use
threetypesof nodes: (1) normal nodeswith answering

powerof
��� Ù and >1) ���ç� , (2) lowAP nodeswith answer-

ing powerof
���ç�

and>1) ���r� , and(3) highRhonodeswith
answeringpower

��� Ù and >Õ) ��� � . For our simulations,
we usedp �^� nodesrandomgraphswith equalnumberof
nodesfor eachtype.Whenanodebreaksalink, it chooses
thelink with thelowestweight.

We conductedsimulationson different initial graphs
with respawning wherea nodechoosesanothernodeat
randomwhen it wantsto exchangeneighbors. We also
force a nodeto accepta new link if asked. We useAv-
erage Inversefor thenew edgeweight. For eachrun, we
first ran a simulationfor

�^�^���
rounds.We thenfor each

nodecomputedhow its ��
���âeE!|�ã�J'�
�O� utility hasimproved
or deterioratedasa ratio againstthebaselinecomparison
whenthereis no respawning. For brevity, we presentthe
result from onerun in Figure22. (Other runsproduced
similar results.) We plot threecumulative distribution
plots, one for eachtype of nodes(normal, lowAP, and
highRho).Thex-axisshows the improvementratio (e.g.,
biggerthan

�
meansbetterutility). They-axisshows the

percentageof nodes.Notice that for a normalnodethat
is behaving properly, á �?Þ of themhave improvedutility
(ratio greaterthan

�
) after respawning. In contrast,� �?Þ

of lowAP nodesand á �?Þ of highRhonodesexperienced
reductionin utility (ratio lessthan

�
). Also notice that

thereis a significantgapbetweenthe normalnodesand
the maliciousnodesin their improvments.Thereforewe
canconfidentlyconcludethatwhenallowing nodesto re-
connect,goodnodeswill derive greatbenefitswhile bad
nodescannottakesignificantadvantagesof thesystem.

As previously discussed,nodesthat give lesscapacity
to thesystemarepenalizedmoreseverelythannodesshar-
ing lessdata.This intuition is verifiedin Figure22 asthe
lowAP nodesexperiencelessdeteriorationin utility than
highRhonodes. Curiously, onemight expect that nodes
with highdegreewouldachievebetterimprovementratio.
This intuition is incorrectascanbeseenin thescatterplot
of nodedegreeversusimprovementratio in Figure 23.
There is no trend or clusteringto draw any correlation
betweennodedegreeandimprovement.

5 Generalizing SLIC

The greedySLIC approachis quite general:a nodepro-
videsservice,andin returnreceivesservicefrom others.
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Figure 22: CDF of utility impr ovement
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The amountof serviceit providesa neighboris related
to the servicea nodereceives,and this createsthe right
incentives. The paperhasdealt with only one type of
service,answeringqueries,but the ideacanbe usedfor
otherservices,e.g.,downloadingfiles, indexing content
of nearbynodes,doingcomputations,etc.

If a nodeprovidesa varietyof services(e.g.,queryan-
swerngandfile download)onecaneither: (1) aggregate
services(renderedor received) into a singlemetric, so a
nodecan tell the overall level of servicereceived from
others,or (2) runSLIC in parallel,whereeachclassof ser-
vice is handledseparately. For example,in aggregrating
queryansweringandfile downloadinto a singlemetric,
a successfulfile downloadcanequateto, say,

�^�
search

hits.

6 Related Work

Similar to SLIC’s retaliation-basedapproach,BitTor-
rent [4], a P2Pclient for sharinga singlefile, usesa sim-
ilar idea for controlling download/uploadratesbetween
participatingclients. Our greedyapproachis also simi-
lar to the gametheoreticapproachof [9] whereLai et.
al. analyzethe impactof a typeof tit-for-tat strategy. In
contrastto our localapproach,reputation-basedandtrust-
basedsystemsenforcea global structure. For example,
theEigenTrustalgorithm[8] “collects” all pair-wisepref-
erencevaluesbetweenpeersandcomputestheeigenvec-
tor as the global reputation. Alternatively, Cornelli et.
al. in [5] proposea voting schemewherea peersolic-
its “votesof confidence”whendecidingbetweenwhich
peersto downloaddatafrom. Onecanalsotranslatethe

notionof trustinto hardcurrency by usingpayment-based
ideaslike Mojo Nation [11] wherepeersearncreditsfor
providing service.

7 Concluding Remarks

We havedemonstratedthatoursimpleSelfishLink-based
InCentive (SLIC) createsa desirableincentive structure
for unstructuredP2Pfile sharingsystemswherenodesin
exchangefor betterserviceareencouragedto sharemore
data,give more capacityto neighboringnodes’queries,
andaddnew overlay links. Moreover, if nodesdynami-
cally adjusttheir links to strive for betterservice,SLIC
respondsquickly andfairly for nodesthatareplayingby
the rule to improve their quality while not letting mali-
ciousnodestakeadvantageof thesituation.
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